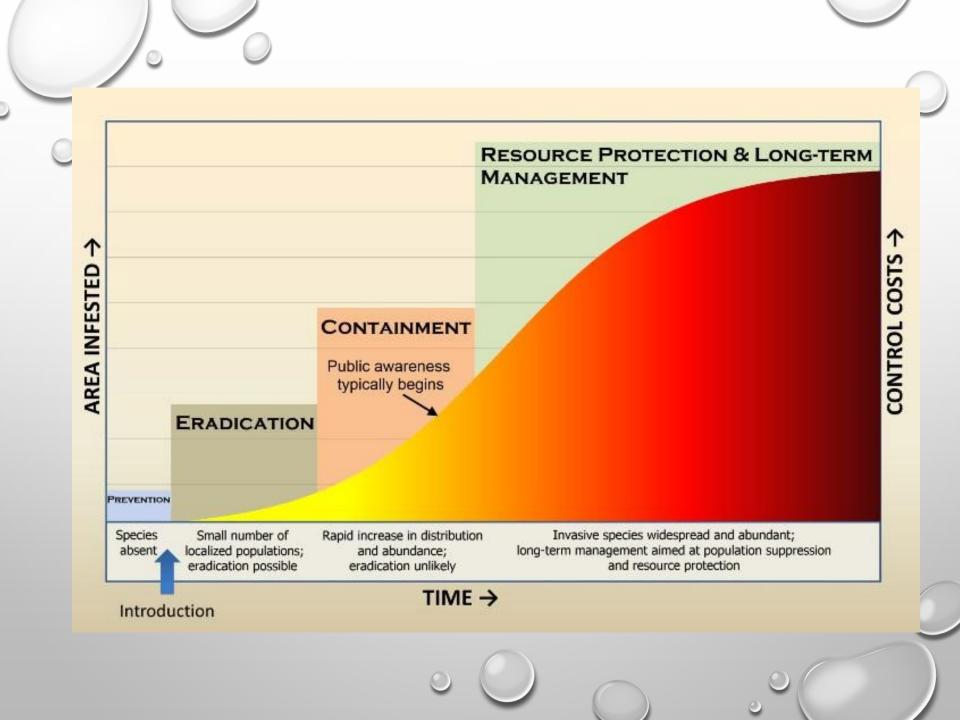
AQUATIC PLANT SURVEY METHODS

EMILY MAYER

WATERSHED SCIENTIST RARITAN HEADWATERS



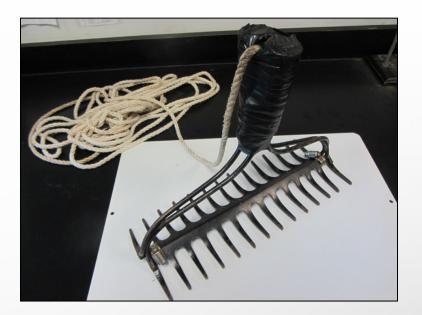
WHY CONDUCT A PLANT SURVEY?

CHECK STATUS OF GENERAL LAKE ECOSYSTEM HEALTH

- PRESENCE/ABSENCE INVASIVE SPECIES
- INCREASED DIVERSITY INDICATES HEALTHY SYSTEM
- TRACK CHANGES IN PLANT COMMUNITY
- PRESENCE OF RTE SPECIES
- PERMIT REQUIREMENTS
 - I.E. NYSDEC PRIORITY WATERBODY LIST
- PRE AQUATIC PLANT MANAGEMENT
 - DETERMINE BEST METHOD
- POST AQUATIC PLANT MANAGEMENT
 - EFFICACY OF METHODS EMPLOYED

TYPES OF AQUATIC PLANT SURVEYS

- VISUAL SURVEYS
 - COMMONLY USED, EASY TO PERFORM
 - DIFFICULT TO QUANTIFY RESULTS/REPEAT
- BIOMASS SAMPLING
 - 1-METER QUADRANT
- TRANSECT SAMPLING
- REMOTE SENSING
- POINT INTERCEPT METHOD



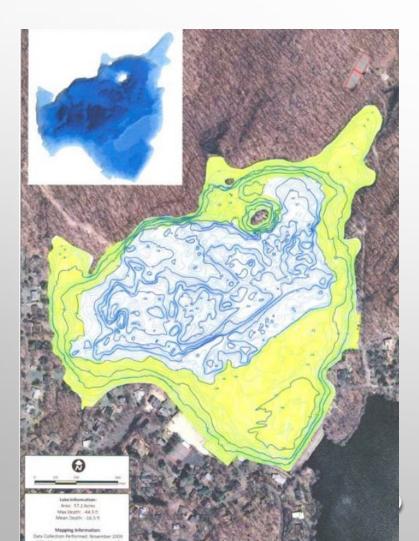
"Adaptive Monitoring"

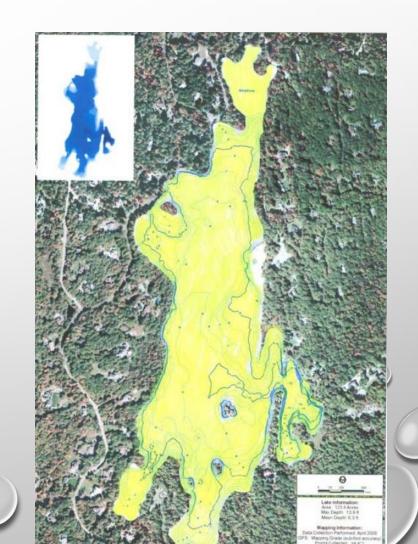
POINT INTERCEPT AQUATIC PLANT SURVEY (PIM)

- DEVELOPED BY ACOE
 - MODIFIED BY CORNELL UNIVERSITY
 - TWEAKED BY BIOLOGISTS (CD/EM)


- ACCEPTED METHODOLOGY BY REGULATORS/MANAGERS
 - RECOMMEND ONE SURVEY LOCATION/HECTARE
 - I PREFER 1 + LOCATION PER LITTORAL ZONE ACRE (~100-125/DAY)
- ASSIGN PLANT MASS DENSITIES
 - NO PLANTS, TRACE, SPARSE, MEDIUM, DENSE
 - ASSIGNED TO OVERALL SUBMERSED PLANTS
 - THEN ASSIGNED TO EACH DIFFERENT PLANT SPECIES

Abundance	Abundance #	Dry Weight (g/m ²)	Mean Weight (g/m ²⁾	Description	
No Plants ("0")	0	0.0	0.0	Bare Rake	
Trace ("T")	1	~0.0001-0.9999	0.5	Finger-full	
Sparse ("S")	2	~1.0000-24.9999	13.0	Hand-full	
Medium ("M")	3	~25.0000-99.9999	62.5	Covers Rake	
Dense ("D")	4	~100.0000-400.0000+	250.0	Difficult to get plant mass into the boat	




ADVANTAGES OF PIM PLANT MAPPING

- STANDARD METHOD
 - IMPORTANT PART OF MULTI-YEAR SAV CONTROL PROJECTS
- **REPEATABLE**
 - SUITABLE TO TRACK ABUNDANCE AND DISTRIBUTION CHANGES OF SPECIFIC
 PLANTS OVER TIME
 - PRE AND POST SAV CONTROL EFFICACY
 - SITE COMPARISONS
- CAN BE CONDUCTED BY VOLUNTEER GROUPS
 - LIMITATIONS: GPS CAPABILITIES AND PLANT ID SKILL

DETERMINE LITTORAL ZONE

Overlay Grid on the Littoral Zone

- 50-meter Grid
 - Project Specific (Hydrilla)
 - Smaller = more sampling
 - Larger = less sampling
- # of Weed Rake Tosses
 - One, Two or Three
 - More Tosses = more Target or RTE species
 - But....

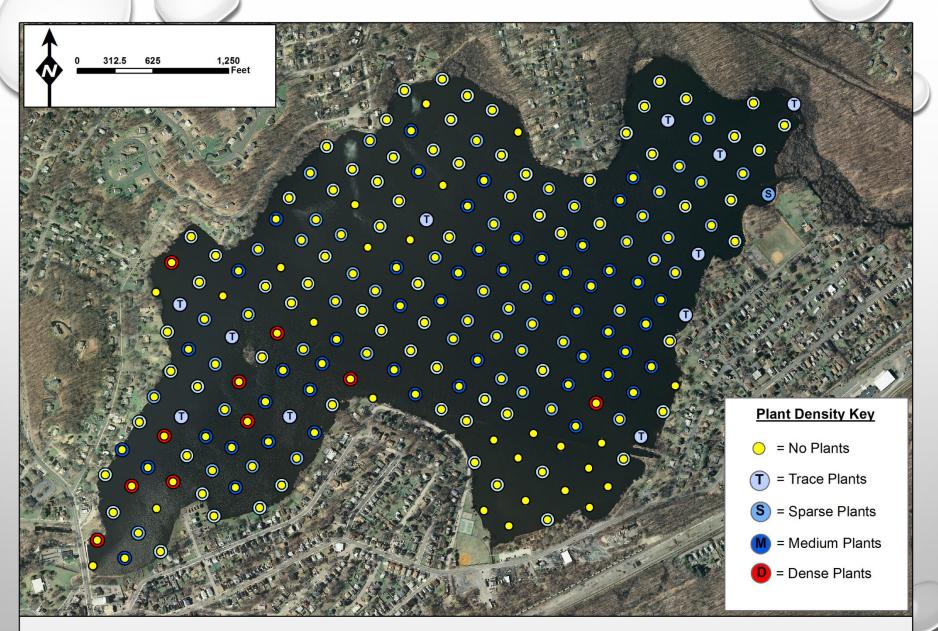
MULTIPLE RAKE TOSS CALCULATIONS

- ASSIGN AN ABUNDANCE NUMBER TO EACH DENSITY
- NO PLANTS =0, TRACE=1, SPARSE=2, MEDIUM=3, DENSE=4
- TO DETERMINE THE PLANT DENSITY AT A GIVEN SITE, SUM AND CALCULATE THE MEAN OF THE ABUNDANCE NUMBERS
- EXAMPLES:

Rake Toss	Abundance	Abundance #	Rake Toss	Abundance	Abundance #
1	D	4	1	D	4
2	S	2	2	Т	1
3	D	4	3	Т	1
<u>Mean</u>	<u>M</u>	<u>3.33</u>	<u>Mean</u>	<u>S</u>	<u>2.0</u>

DATA MANAGEMENT

- QA/QC AND DEFINING CODES
- OVERALL ABUNDANCE & DISTRIBUTION
- OCCURRENCE AT SITES
- HOW TO QUANTIFY YOUR DATA?
 - FQI (FLORISTIC QUALITY INDEX) CONSERVATION VALUE (VARIES BASED ON STATE)


Sample Point	Sample	Latitude (NAD83)	Longitude (NAD83)	Depth (feet)	Overall Abundance	Arrowhead Rosette	Benthic Filamentous Algae	Brittle Naiad	Common Bladderwort	Common Waterweed	Coontail	
1	Α											
1	В											
1	М	40.36539°	-74.94594°	7								
2	Α											
2	В											
2	М	40.36497°	-74.94578°	7								
3	Α											
3	В				S					S		
3	М	40.36453°	-74.94558°	4.5	Т					Т		
4	Α											
4	В				M					М		
4	М	40.36408°	-74.94538°	5.5	S					S		

 SHANNON DIVERSITY MODEL - NUMBER OF SPECIES LIVING IN A HABITAT (RICHNESS) AND THEIR RELATIVE ABUNDANCE (EVENNESS)

Frequency of Occurrence Table

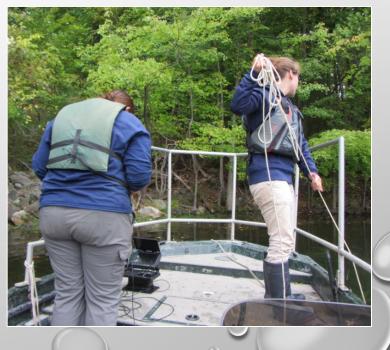
Aquatic Macrophyte Abundance Distribution September 22, 2015

Aquatic Macrophytes	Тс	otal	Trace Sparse		arse	Med	lium	Dense		
	Sites	%	Sites	%	Sites	%	Sites	%	Sites	%
Total Sites	50	100%								
Overall Plant Abundance	40	80%	8	20%	5	13%	13	33%	14	35%
Small Duckweed	33	66%	19	58%	10	30%	2	6%	2	6%
Brittle Naiad	31	62%	5	16%	9	29%	9	29%	8	26%
Eurasian Water Milfoil	29	58%	13	45%	10	34%	5	17%	1	3%
Coontail	18	36%	16	89%	1	6%	1	6%	0	0%
Great Duckweed	16	32%	14	88%	2	13%	0	0%	0	0%
Northern Naiad	16	32%	8	50%	6	38%	2	13%	0	0%
Water Chestnut	15	30%	8	53%	5	33%	1	7%	1	7%
Spatterdock	6	12%	4	67%	2	33%	0	0%	0	0%
Wild Celery	4	8%	3	75%	1	25%	0	0%	0	0%
Water Stargrass	4	8%	4	100%	0	0%	0	0%	0	0%
Benthic Filamentous Algae	3	6%	2	67%	1	33%	0	0%	0	0%
Common Waterweed	2	4%	1	50%	0	0%	1	50%	0	0%

Eurasian Water Milfoil (*Myriophyllum spicatum*) Distribution Lake Musconetcong Aquatic Vegetation Survey Stepters bell 20 2010

WATERSHED MONITORING

- MONITORING YOUR LOCAL WATERSHED
- MODIFIED SURVEY METHODS (DR CANAL)
- STREAM MONITORING PROGRAM
 - PLANT ID WORKSHOPS
- EDUCATING THE PUBLIC AND VOLUNTEERS


Case Study#1: New Croton Reservoir

1. Aquatic Plant Bio-volume Mapping

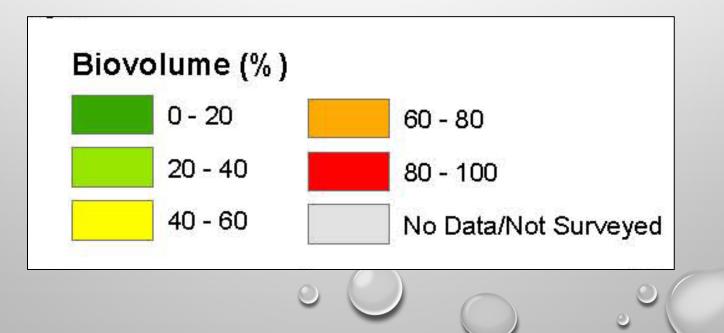
Hydroacoustic mapping Assumed Littoral Zone

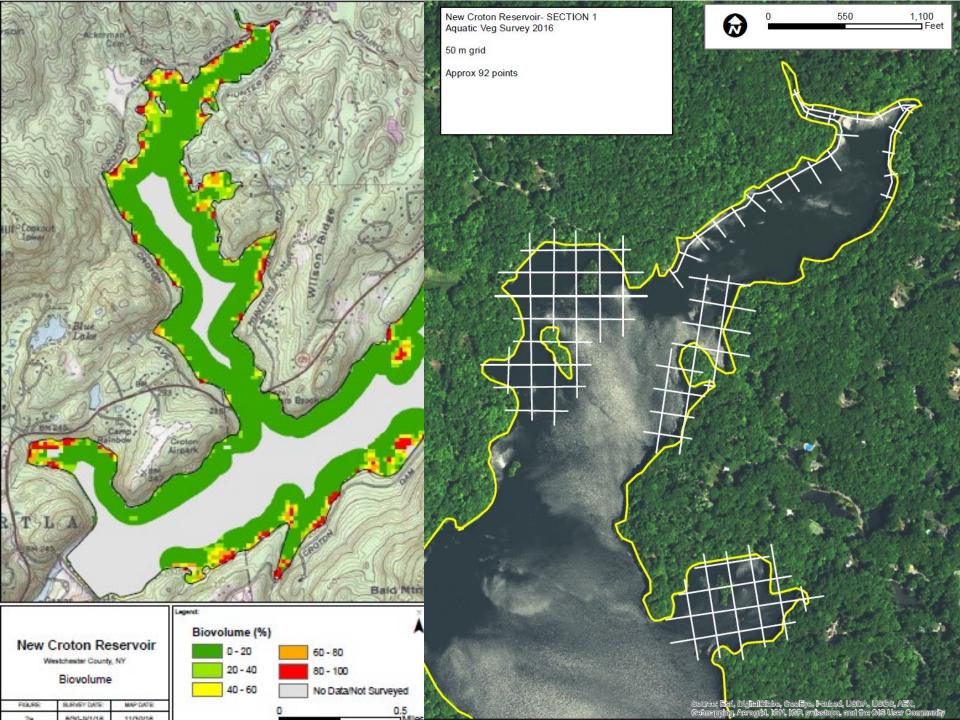
2. PIM Aquatic Plant Mapping

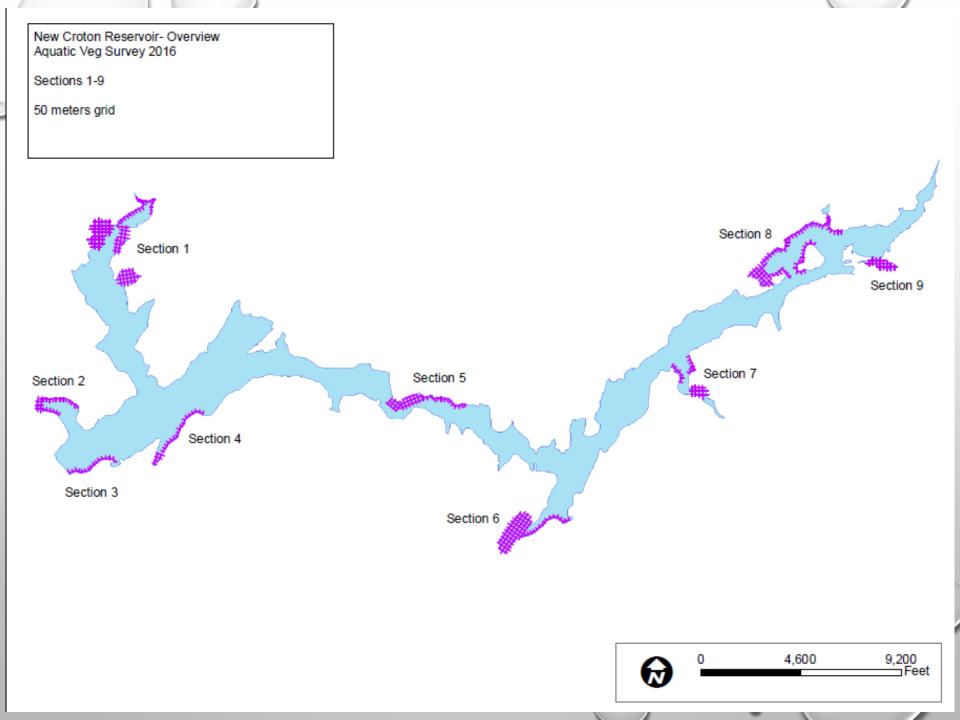
Select areas from Phase 1 Coves and Shorelines

Phase 1: Hydroacoustic Plant Mapping

- **1.** Side Scan Fathometer
 - 2. Data Collection
 - Late August
 - Boat Speed: < 8 mph
 - Shorelines, coves and littoral zone
 - 18 hours on water data collection
 - 20-minute runs (file size)

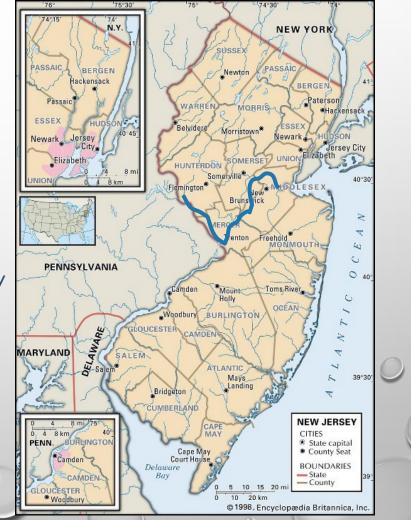

3. Data Outputs

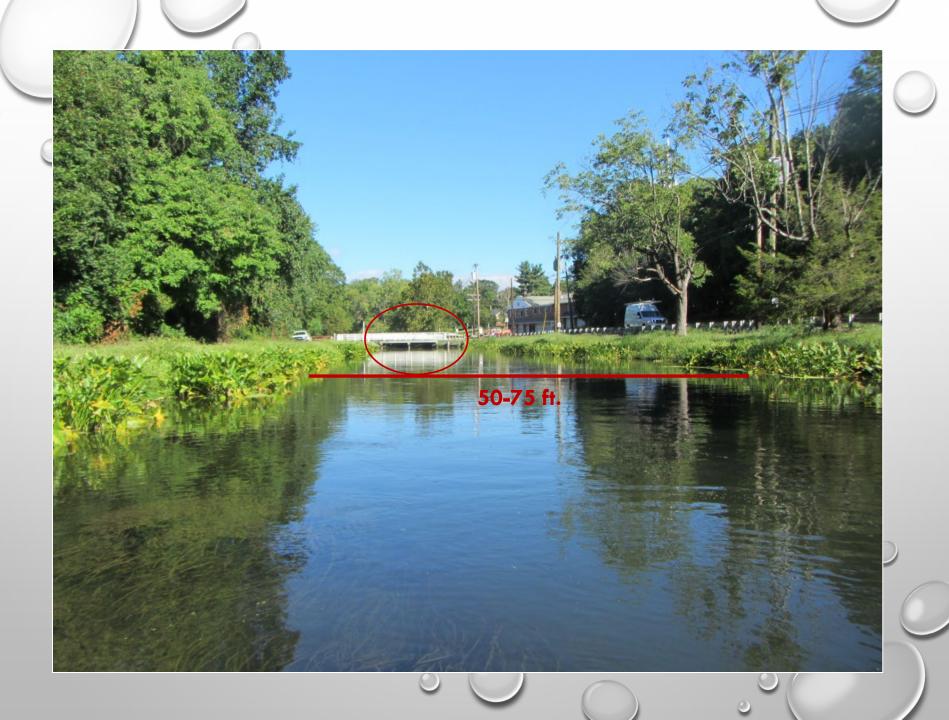

- Uploaded to Manufacturer Server (QC/Interpolation)
- Reprocessed with Spatial Analyst
- ArcMap 10.3
- Bathymetry and Bio-volume Maps



Submersed Aquatic Plant Bio-volume

- 1. % of SAV in Water Column
 - Ex. Plants at Surface = 100%
 - Ex. Water Depth 10 ft.; Plant Height 5 ft. = 50%
 - 2. Displayed in a Color Array
 - **3. Doesn't Differentiate Species**

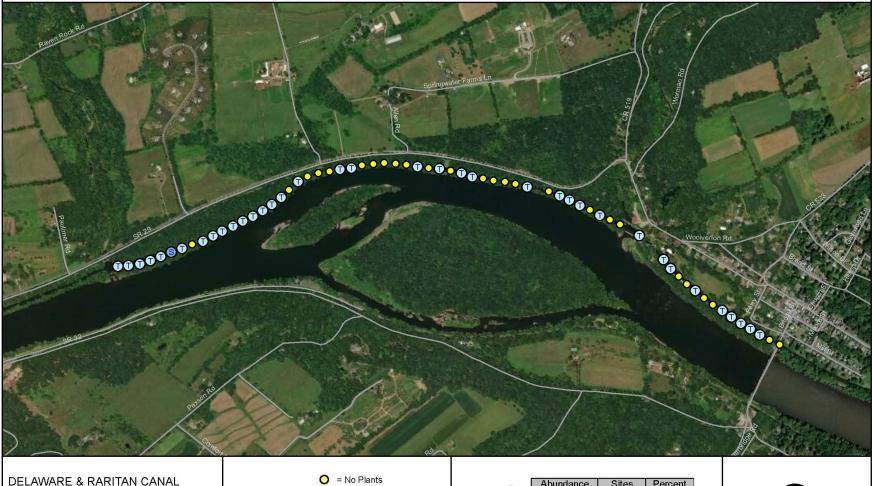




CASE STUDY #2: D&R CANAL

- DELAWARE AND RARITAN RIVERS
- CONSTRUCTED IN 1830'S
 - MOSTLY HAND DUG
 - ANTHRACITE: PA TO NJ
- LENGTH: 66 MILES
- Primary Goal: Suitable Water Flow
- 2016: Flow Decrease
 - July discovered hydrilla

For more information on the Project: http://www.niwsa.org/hydrilla.html



NON-TREATMENT AREA OVERALL AQUATIC PLANT ABUNDANCE SEPTEMBER 21, 2018

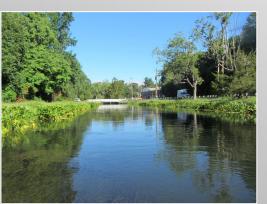
DELAWARE & RARITAN CAN Non-Treatment Area Aquatic Vegetation Survey September 21, 2018

Total Sample Sites: 63

= No Plants
 = Trace Plants
 = Sparse Plants
 = Medium Plants
 = Dense Plants

Plant Density

c	Abundance	Sites	Percent		
Percent Distribution	Total	37	59%		
	Trace	36	97%		
	Sparse	1	3%		
	Medium	0	0%		
	Dense	0	0%		



THANK YOU!

EMILY MAYER, M.S. WATERSHED SCIENTIST

RARITAN HEADWATERS

EMAYER@RARITANHEADWATERS.ORG

