

RARITA

April 16, 2025 NJ Invasive Species Strike Team Conference

Jay F. Kelly, Ph.D. Center for Environmental Studies, Raritan Valley Community College

White-Tailed Deer Population Trends

Reasons for Deer Population Growth

- **1. Extermination of Predators**
- 2. Cessation of Commercial Hunting
- 3. Increased Food/Refugia Suburban/Ag.

4. Warming Winters

Figure 2.—White-tailed deer population density, southern United States, 1950, 1970, and 1980 (Southeastern Cooperative Wildlife Disease Study [University of Georgia, n.d.], used with permission].

Priorities for Forest Restoration

Deer Density

>30 deer/mi² 5-29 deer/mi²

<15 deer/mi²

#1: Deer Browse = Deficits in tree regeneration and native understory cover

Probability of Moderate/High Browse 41 - 5061 - 7081 - 90 51 - 6071 - 80 91 - 100 **Moderate/High Browse in 79% Forests in Mid-Atlantic** Miller and McGill (2019) **Regeneration Deficits** in >50% Forests **Regeneration Debt Severity** Absent (0) Low (1) Moderate (2) ligh (3) Severe (4)

nalysis Area

McWilliams et al. (2018)

Major Declines in Native Understories in NJ Since Mid - 1900s

23 Historical Studies = 62 Plots Revisited

100

80

(Kelly 2019)

Establishing Causation - Long-Term, Large Deer Exclosures

Shifting Species Composition – Increases in Browse-Resistant Species

Selective Regeneration (Kelly 2019)

#2: Shifting Plant Species Composition –

Increased Invasive Plant Species

Max. %Cover		
Past	Present	
1%	49%	
2%	32%	
4%	83%	
<1%	46%	
19%	95%	
2%	39%	
NA	66%	
NA	50%	
NA	38%	
NA	44%	
NA	59%	
NA	21%	
	Iviax. Past 1% 2% 4% <1%	

(Kelly 2019; Kelly and Ray 2023)

Priorities for Forest Restoration #3: Land Use History Effects

Post-Agricultural Forest = Forest Cover Late 1800's 46% of Forestland (1,407 km²) Forest Cover 2015 Primary Post-Ag

Natives vs. Invasives by Land Use History

EGE

Comparing Soils in Primary vs. Post-Agricultural Forests

ð

Š

Cumulative %

Additive Effects of Deer Browse and Ag. Land Use History

Significant Declines in Native Species & Significant Increases in Exotic, Invasive Species

Establishing Causation – Duke Farms (Almendinger et al. 2020) MMUNITY COLLEGE

Deer Population Benchmarks

>10 deer/mi² impacts preferred

browse species

>15 deer/mi²

impacts to tree regeneration

>20 deer/mi²

impacts to wildlife, food web effects

(Drake et al. 2002, Almendinger et al. 2020, Russell et al. 2017)

Historic: 8-11 deer/mi²

i² NJDEP (1999): **38 (13-76) deer/mi²**

Overbrowsed forest at Hutcheson Memorial Forest in Franklin Township (2012)

Overbrowsed forest with invasive barberry shrubs at Peter's Tract in Bernardsville (2016)

How many deer are/were there in NJ...?

 Are past & present deer population and density estimates accurate?
 What densities exist(ed) in northern NJ where our forest research was conducted?

Down the Rabbit Hole...

"average minimum statewide deer density"

Estimated pre-harvest deer population

Total "deer range" or area of huntable lands

"minimum statewide deer population"

based on annual known mortality (from deer harvest *only*) estimate of hunted population size prior to hunting (late summer) [developed from system used in PA (NJDEP 1978)]

Adult males (calculated using buck harvest and age structure)

- # Adult females (use male & female age structures to determine male/female ratio, then multiply by number of bucks in herd)
- # Fawns (harvest and female gestational data)
 - = Minimum pre-harvest deer population

COMMUNITY COLLEGE

Fuzzy Numerators: "Minimum Deer Population Size"

Two methods differing in fawn production estimates yield:

114,850 and 101,150 deer (13,700 or 14% difference)(NJDEP 1982) Third method used in 1982 predicting reproductive rates from yearling male antler beam: 119,898, 110,998 and 125,290 (14292 or 13% difference)(NJDEP 1983)

Fuzzy Denominators: "Deer Range" (i.e., Area subject to hunting)

White-tailed Deer

Deer range = agricultural + woodlands (excludes developed, water,

beaches and marshlands)(NJDEP 1977)

32,719 ± 246 sq mi. of deer range (NJDEP 1984-2012)

= 66% of total NJ land area

Are past/present reported deer densities accurate...?

10.1 deer/mi² in 1972 (SC and FoHVOS 2014)
20.5 deer/mi² in 1987 (Van Clef 2004)
27.6 deer/mi² in 1995 (SC and FoHVOS 2014)
38.0 deer/mi² in 1998 (NJDEP 1999)
17.8 deer/mi² in 2006 (NJ Invasive Species Council 2009)
14.4 deer/mi² in 2011 (SC and FoHVOS 2014)
16.7 deer/mi² in 2017 (NJDEP 2019)

Are past/present deer densities accurate...? *Nope...* Deer range \neq NJ Land Area →15 deer/mi² 10.1 deer/mi² in 1972 (SC and FoHVOS 2014) 20.5 deer/mi² in 1987 (Van Clef 2004) →31 deer/mi² 27.6 deer/mi² in 1995 (SC and FoHVOS 2014) →43 deer/mi² 38.0 deer/mi² in 1998 (NJDEP 1999) →38 deer/mi² 17.8 deer/mi² in 2006 (NJ Invasive Species Council 2009) →25 deer/mi² 14.4 deer/mi² in 2011 (SC and FoHVOS 2014) →22 deer/mi² 16.7 deer/mi² in 2017 (NJDEP 2019) → 30 deer/mi² (NJ Land + Water...)

Why not just count the deer...?

RVCC Spotlight Surveys 2015-2018

Drake et al. (2005) – Duke Farms Comparable results of spotlight and infrared

Spotlight Surveys –

RA COLLEGE COMMUN

Location	Year	Density	Range	Standard Deviation as % Mean
Watchung	2019	61±15	(47-76)	25%
	2018	41±12	(29-53)	29%
Raritan	2019	112±13	(99-124)	12%
	2018	81±13	(68-95)	16%
Readington	2019	132±39	(93-170)	30%
Princeton	2015	36±11	(27-48)	31%
(deNicola	2014	45±17	(31-65)	38%
Unpubl.data)	2011	39±27	(20-74)	69%

Solebury, PA (US Survey Period	SDA) Average Deer Density Estimate	Population Estimate		
2006-2007	155 deer/square mile	4,121		
2007-2008	99 deer/square mile	2,633		
April 2008	86 deer/square mile	2,287		
October 2008	42 deer/square mile	1,117		
2009-2010	112 deer/square mile	2,979		
2010-2011	120 deer/square mile	3,192		
March 2012	141 deer/square mile	3,750		
March 2013	162 deer/square mile	4,276		
March 2014	167 deer/square mile	4,415		
March 2015	126 deer/square mile	3,338		
March 2016	197 deer/square mile	5,211		
March 2017	146 deer/square mile	3,860		
March 2018	169 deer/square mile	4,453		
March 2019	189 deer/square mile	4,992		
Plot-Based Sam	pling Average	Average =		
	+ 24%	of Mean		

PI

Distance Sampling

Average = ± 31% of Mean!!!

Infrared sUAS Deer Surveys

<u>Methods</u>: Consecutive Nights

Weather Conditions (No Precip, Winds <15 mph, >20°F)

FAA Remote Pilot License (w/Certified Visual Observers)

Autel Evo II Dual Drone, w/FLIR 640 Thermal Sensor

Class G Airspace, <400' Above Ground

Complete Spatial Coverage – Fixed Wing vs. Drone

Watchung Borough (Vision Air Research 2017)

Duke Farms (RVCC 2021)

RA

COLLEGE

Other Advantages of sUAS/Drones

Changing Elevation

Changing Angle/Duration

Comparison of Infrared Methods - Fixed Wing vs. Drone UNITY COLLEGE

https://youtu.be/2H JUae06ho

	Duke Boundaries			Overall Search Area		
Duke Farms 2020	# Deer –	# Deer –	% Dif.	# Deer –	# Deer –	% Dif.
	Aircraft	Drone		Aircraft	Drone	
Outside Exclosure (Low Density Veg.)	157	167	-6%	184	191	-4%
Inside Exclosure (High Density Veg.)	20	27	-26%	20	27	-26%
Outside Exclosure (High Density Veg.)	14	17	-18%	44	58	-24%
TOTAL	191	211	-9%	248	276	-9%

RVCC-CES Deer Surveys: Thermal Drone Data

63 sites (2019 – 2023) 1,333.9 km² total 215 nights (avg = 5.7 km²/night)

2 nights <10/mi² (1%)

4 sites <20/mi² (6%)

Deer Density = 66 deer/mi^2

Direct Measures of Past Deer Populations: NJDEP Helicopter Surveys Over Snow (1962-1972)

Outdoor

Deer Density: ≤15 deer/mi²

Deer Density Trends: Past to Present

Comparing Helicopter Surveys Over Snow (1962-1966) to Thermal Drone Surveys (2019-2023)

Late Winter/Spring Density (i.e., *biological* minimum)

Deer Density Trends: Past to Present

Confirmed Increases Since mid-1900's In Northern NJ

500

Ω

Historic

Present

100

50

Historic

Present

40

20

Historic

Present

6000

4000

2000

0

Historic Present

Conclusions & Next Steps

- Minimum Statewide Density Estimates Insufficient (NJDEP)
- Past/Present Densities in Northern NJ
 - ≤15 deer/mi² (1962-1972)
 - 66 deer/mi² (2019-2023)
- Future Research
 - Relationships of Deer Density to Land Use,
 Deer Management, Understory Condition,
 Prescribed Fire Effects, Etc.
- Revising Past Deer Density Studies

Deer Density Relationships: Deer Management

Natural Lands Trust Preserves

Suvey Area	Hunting Status	Survey Area (sqmi)	# Deer Observed	Density (deer/sqmi)
Bear Creek Preserve	Hunting Permitted	3.70	233	63
Budd Lake Bog Preserve	Hunting Permitted	1.86	82	44
Wallkill Preserve North	Hunting Permitted	1.21	50	41
Wallkill Preserve South	Hunting Permitted	1.92	43	22
Hagedorn Preserve	Bow Only	2.62	137	52
Limestone Ridge Preserve	Bow Only	2.37	158	67
Sweet Hollow Preserve	Bow Only	3.15	219	69
Beech Ridge Preserve	No Hunting	1.64	126	77
Buttermilk Bridge Preserve	No Hunting	2.56	234	91
Milford Bluffs Preserve	No Hunting	1.85	183	99

43

63

89

Deer Density Relationships: Deer Management & Tree Regeneration

Deer Density Relationships to Tree Regeneration *After Prescribed Fire*

(Kelly et al. 2021)

Deer Density Relationships: Deer-Vehicle Collisions

Average \$4,000 vehicle damage per reported collision (State Farm Insurance 2018)

Princeton reduced population by 60%, and collisions declined by the same amount that year (Williams et al. 2013)

River Vale sUAS Heat Map

1 - 10

50-100 100-186

Roads Surveyed

Revisiting Past Studies: A Can of Worms...?

A Can of Worms...(continued) Deer Density Thresholds

<u>Census</u>

- Aerial surveys (Helicopter) ≤80-90% accurate
- Infrared Aerial Surveys (Fixed-wing Aircraft) 60-90%
- Infrared sUAS Surveys (Drone) 95-100% accurate

Sampling

- Spotlight Surveys 31-88% accurate, highly variable
- Fecal Pellets high variability, temperature dependent
- Trail Cameras high variability, error/double-counting
- Harvest Statistics high variability, limited to hunted population
- Mark-Recapture ???

Healthy forest with dense understory vegetation and native plant species. Overbrowsed forest at Hutcheson /lemorial Forest in Franklin Township 2012)

barberry shrubs at Peter's Trac Bernardsville (2016)

>10 deer/mi² impacts preferred browse species

>15 deer/mi² impacts to tree regeneration

>20 deer/mi² impacts to wildlife, food web effects

(Drake et al. 2002, Almendinger et al. 2020, Russell et al. 2017)

Acknowledgements

Acknowledgements

- Funding: NJDEP-NJSeaGrant; US Forest Service; Morris County Park Commission; NJDEP-ONLM; National Science Foundation SENCER-ISE Program; RVCC Foundation; RVCC Foundation; RVCC Enviro. Club; Highlands Coalition
- Project Partners: Duke Farms Thom Almendinger, Charles Barreca, Dr. Jon Wagar; NJDEP Joe Bilinski, Bob Cartica, Greg McLaughlin, Jeremy Webber; US Forest Service – Dr. Mike Gallagher; NJ Audubon – Dr. Nellie Tsipoura
- RVCC Staff & Student Interns Jessica Ray, Allyson Schmieder, Sarah Crosby, Chris Balajadia, Peter Evanowski, Timothy Semmling, Chase Craig, Justin Daniel, Jose Farfan, Aaliyah Padilla, Rebekah Buczynski, Lee Minicuci, Jason Hafstad, Cory Snyder, Dylan Hardy, Adam Kohler, Ali Severino, Dani Yashinovitz, Bri Primiani, Zachary Sparta, Kristen Greaney, Alvin Chin, Willie Grosch, Eric Williams, Bonnie Semmling, Michael Allers, Samantha Naulty, Valeria Izeppi, Noah Motz, Raquel Menella, Sasha Kovalyev, Chris Baron, Stephanie Murphy, Zach Nekola, Ray Zamora, Jess Tirado, Max Spann, Juaquin Goodbar, Lina Rivetti, Justin Andell, Deidre Supple

References

- Almendinger T, Van Clef M, Kelly JF, Allen M, Barecca C. 2020. Restoring Forests in Central New Jersey through effective deer management. Ecological Restoration 38: 246-256.
- Kelly JF. 2019. Regional changes to forest understories since the mid-Twentieth Century: Effects of overabundant deer and other factors in northern New Jersey. Forest Ecology and Management 444: 151–162.
- Kelly JF, Ray J, Minicuci N, Buczynski R. 2021. Effects of Prescribed Burning on Forest Understories in Northern NJ. Report prepared for Philadelphia Botanical Club, NJ Natural Lands Trust and Mercer County Parks, RVCC Center for Environmental Studies
- Kelly JF, Ray JJ. 2023. Regional impacts of agricultural land use history on forest vegetation and soils: Comparing primary and post-agricultural forests in Northern New Jersey. Forest Ecology and Management 549 (2023) 121427. <u>https://doi.org/10.1016/j.foreco.2023.121427</u>
- McWilliams WH, Westfall JA, Brose PH, Dey DC, D'Amato AW, Dickinson YL, Fajvan MA, Kenefic LS, Kern CC, Laustsen KM, Lehman SL, Morin RS, Ristau TE, Royo AA, Stoltman AM, Stout SL. 2018. Subcontinental-scale patterns of large-ungulate herbivory and synoptic review of restoration management implications for midwestern and northeastern forests. Gen. Tech. Rep. NRS-182. Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northern Research Station. 24 p.
- Miller KM, McGill BJ. 2019. Compounding human stressors cause major regeneration debt in over half of eastern US forests. Journal of Applied Ecology 56:1355–1366.
- Russell MB, Woodall CW, Potter KM, Walters BF, Domke GM, Oswalt CM. 2017. Interactions between white-tailed deer density and the composition of forest understories in the northern United States. Forest Ecology and Management 384: 26–33.

Thanks!!!

RVCC CENTER FOR ENVIRONMENTAL STUDIES

<u>Contact</u>: Dr. Jay F. Kelly Co-Director, Center for Environmental Studies Raritan Valley Comm. College

> 908-526-1200x8531 jkelly@raritanval.edu

The RVCC Center for Environmental Studies engages approximately 100 students each year in real-world learning experiences, both inside and outside the classroom. These experiences empower them to transform their academic knowledge into real-world research and problem solving skills that prepare them to pursue successful careers in environmental science, sustainability, ecology, natural resources management, and related fields.

https://www.raritanval.edu/ Environmental-Studies

